If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+20t+60=0
a = -4.9; b = 20; c = +60;
Δ = b2-4ac
Δ = 202-4·(-4.9)·60
Δ = 1576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1576}=\sqrt{4*394}=\sqrt{4}*\sqrt{394}=2\sqrt{394}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{394}}{2*-4.9}=\frac{-20-2\sqrt{394}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{394}}{2*-4.9}=\frac{-20+2\sqrt{394}}{-9.8} $
| 7x–7x=4 | | 2z/7-6=9 | | 22x-x^2=9x | | 5/9z=30 | | 4.2(0.5x-1)=6(0.25x+1) | | 1/3y+7=1/7y | | 4x-5x=3x-3 | | 4x-5x=3x3 | | 4x=2=26 | | 100=0.8x | | 0n-5-4n=3 | | 4n+1-1n=-11 | | 5y+2y+9=180 | | 2x^2-56x-1074=0 | | 0=8z+-8 | | |2x-19|=-7 | | 0=2y-5 | | y/7+2/5=y/5-2/5 | | 23/5+4*n=2/5-5*n | | (5x+7)-3x-1=22 | | 4m+8=32m= | | c=19.95+0.49X | | A-2(9-2b)=-8 | | 5y+y+5=10-y+10 | | 40=3.5x-30 | | -3.3=9.2+w/5 | | 8/x+5/x+2=1 | | 4/3-x/3=-5x/6+3x/4 | | −2(3y−6)+4(5y−8)=92 | | 4+8x+12+32=6x-8x-18x | | 7(2n+3)/5=7 | | -x-2x=-x/3-3/2 |